【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S=
bccosA.
(1)求角A的大小;
(2)若c=8,点D在AC边上,且CD=2,cos∠ADB=﹣
,求a的值.
参考答案:
【答案】
(1)解:在△ABC中,
,
,
∴
,
∴tanA=1,∵0<A<π,∴ ![]()
(2)解:在△ABD中,∵
,∴
,
∴由正弦定理得
,
∴在△BDC中,由余弦定理得BC2=BD2+CD2﹣2BDCDcos∠BDC=32,
∴ ![]()
【解析】(1)利用三角形的面积计算公式即可得出.(2)利用正弦定理与余弦定理即可得出.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
:
的焦点
与椭圆
:
的一个焦点重合,点
在抛物线上,过焦点
的直线
交抛物线于
、
两点. (Ⅰ)求抛物线
的方程以及
的值;(Ⅱ)记抛物线的准线
与
轴交于点
,试问是否存在常数
,使得
且
都成立?若存在,求出实数
的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=lnx,g(x)=
+mx+
(m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)<
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系
中,
为坐标原点,曲线
:
(
为参数),在以平面直角坐标系的原点为极点,
轴的正半轴为极轴,取相同单位长度的极坐标系,直线
:
.(Ⅰ)求曲线
的普通方程和直线
的直角坐标方程;(Ⅱ)曲线
上恰好存在三个不同的点到直线
的距离相等,分别求出这三个点的极坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在几何体中,四边形
为菱形,对角线
与
的交点为
,四边形
为梯形,
.
(Ⅰ)若
,求证:
平面
;(Ⅱ)求证:平面
平面
;(Ⅲ)若
,
,
,求
与平面
所成角. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知集合A=[a﹣3,a],函数
(﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.
(1)求直线l的方程;
(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.
相关试题