【题目】已知数列{an}满足an+1=qan+2q﹣2(q为常数),若a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},则a1=
参考答案:
【答案】﹣2或﹣
或79
【解析】解:∵an+1=qan+2q﹣2(q为常数,),
∴an+1+2=q(an+2),n=1,2,…,
下面对an是否为2进行讨论:
①当an=﹣2时,显然有a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},此时a1=﹣2;
②当an≠﹣2时,{an+2}为等比数列,
又因为a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},
所以a3+2,a4+2,a5+2∈{﹣3,0,1,9},
因为an≠﹣2,所以an+2≠0,
从而a3+2=1,a4+2=﹣3,a5+2=9,q=﹣3或a3+2=9,a4+2=﹣3,a5+2=1,q=﹣
代入an+1=qan+2q﹣2,可得到a1=﹣
,或a1=79;
综上所述,a1=﹣2或﹣
或79,
所以答案是:﹣2或﹣
或79.
【考点精析】根据题目的已知条件,利用数列的通项公式的相关知识可以得到问题的答案,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=lnx.
(1)求函数f(x)的图象在x=1处的切线方程;
(2)若函数y=f(x)+
在[
,+∞)上有两个不同的零点,求实数k的取值范围;
(3)是否存在实数k,使得对任意的x∈(
,+∞),都有函数y=f(x)+
的图象在g(x)=
的图象的下方;若存在,请求出最大整数k的值,若不存在,请说明理由(参考数据:ln2=0.6931,
=1.6487). -
科目: 来源: 题型:
查看答案和解析>>【题目】设各项均为正数的数列{an}满足
=pn+r(p,r为常数),其中Sn为数列{an}的前n项和.
(1)若p=1,r=0,求证:{an}是等差数列;
(2)若p=
,a1=2,求数列{an}的通项公式;
(3)若a2015=2015a1 , 求pr的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移
个单位长度后,所得的图象与原图象重合,则ω的最小值等于 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数y=f(x)是定义域为R的偶函数. 当x≥0时,f(x)=
,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】在等比数列{an}中,a1=1,且a2是a1与a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
.求数列{bn}的前n项和
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某市若规划一居民小区ABCD,AD=2千米,AB=1千米,∠A=90°,政府决定从该地块中划出一个直角三角形地块AEF建活动休闲区(点E,F分别在线段AB,AD上),且该直角三角形AEF的周长为1千米,△AEF的面积为S.

(1)①设AE=x,求S关于x的函数关系式;
②设∠AEF=θ,求S关于θ的函数关系式;
(2)试确定点E的位置,使得直角三角形地块AEF的面积S最大,并求出S的最大值.
相关试题