【题目】设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为( )
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)
参考答案:
【答案】B
【解析】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),
若A∪B=R,则a﹣1≤1,
∴1<a≤2;
当a=1时,易得A=R,此时A∪B=R;
当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),
若A∪B=R,则a﹣1≤a,显然成立,
∴a<1;
综上,a的取值范围是(﹣∞,2].
故选B.
【考点精析】关于本题考查的集合的并集运算和解一元二次不等式,需要了解并集的性质:(1)A
A∪B,B
A∪B,A∪A=A,A∪
=A,A∪B=B∪A;(2)若A∪B=B,则A
B,反之也成立;求一元二次不等式![]()
解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分15分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an·bn,求数列{cn}的前n项和Tn
-
科目: 来源: 题型:
查看答案和解析>>【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足
,乙城市收益Q与投入a(单位:万元)满足
,设甲城市的投入为x(单位:万元),两个城市的总收益为
(单位:万元).(1)求
及定义域;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义
为n个正数
的“均倒数”.已知正项数列{an}的前n项的“均倒数”为
.(1)求数列{an}的通项公式.
(2)设数列
的前n项和为
,若4
<
对一切
恒成立试求实数m的取值范围.(3)令
,问:是否存在正整数k使得
对一切
恒成立,如存在求出k值,否则说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知四边形BCDE为直角梯形,
,
,且
,A为BE的中点
将
沿AD折到
位置
如图
,连结PC,PB构成一个四棱锥
.
Ⅰ
求证
;
Ⅱ
若
平面ABCD.
求二面角
的大小;
在棱PC上存在点M,满足
,使得直线AM与平面PBC所成的角为
,求
的值.
相关试题