精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(Ⅰ) 离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为,结合,列方程组求得 的值,即可求出椭圆的方程;(Ⅱ)点,直线的方程代入椭圆方程,得,利用韦达定理解出点坐标,同理可求得 点的坐标,利用三角形面积公式将四边形面积表示为 的函数,利用换元法结合函数单调性求解即可.

试题解析:(Ⅰ)由题设知,

,解得

故椭圆的方程为.

(Ⅱ)由于对称性,可令点,其中.

将直线的方程代入椭圆方程,得

,则.

再将直线的方程代入椭圆方程,得

,则.

故四边形的面积为 .

由于,且上单调递增,故

从而,有.

当且仅当,即,也就是点的坐标为时,四边形的面积取最大值6.

注:本题也可先证明”动直线恒过椭圆的右焦点”,再将直线的方程 (这里)代入椭圆方程,整理得,然后给出面积表达式 ,令,

,当且仅当时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数在点处的切线方程;

2是函数的极值点,求函数的单调区间;

3)在(2)的条件下,,若,使不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若 是方程)的两个不同的实数根,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数,为直线的倾斜角).以原点为极点,轴的非负半轴为极轴建立极坐标系,并在两个坐标系下取相同的长度单位.

1)当时,求直线的极坐标方程;

2)若曲线和直线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意,存在,使得成立,则称集合集合”.给出下列5个集合:

;②;③

;⑤.

其中是集合的所有序号是(

A.②③B.①④⑤C.②③⑤D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50.则根据模型可知在10月份每件售价约为_____.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若是函数的两个不同的零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷