【题目】已知集合,若对于任意
,存在
,使得
成立,则称集合
是“
集合”.给出下列5个集合:
①;②
;③
;
④;⑤
.
其中是“集合”的所有序号是( )
A.②③B.①④⑤C.②③⑤D.①②④
【答案】C
【解析】
根据集合是“
集合”,即满足曲线
上过任意一点与原点的直线,都存在过另一点与原点的直线垂直,逐项判定,即可求解.
由题意,集合是“
集合”,即满足曲线
上过任意一点与原点的直线,都存在过另一点与原点的直线垂直,
对于①中,,假设集合
是“
集合”,则存在两点
,满足
,即
,方程无解,所以假设不成立,所以集合
不是“
集合”;
对于②中,函数,则
,当
时,
,函数单调递增,当
时,
,函数单调递减,且当
时,
,图象如图所示,
结合图象,可得对任意一点,总是存在一点
,使得
成立,
所以集合是“
集合”;
对于③中,集合的图象表示一个在
轴上方的半圆,
如图所示,根据圆的性质,可得对任意一点,总是存在一点
,使得
成立,
所以集合是“
集合”;
对于④中,函数,当点
时,
若,则
不成立,
所以集合不是“
集合”;
对于⑤中,函数,
设,则直线
的方程为
,
则过原点且与垂直的直线
方程为
,
直线与函数
的图象必有交点,
所以集合是“
集合”.
故选:C.
科目:高中数学 来源: 题型:
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出
的分布列,并求
.
附:,其中
.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程
在直角坐标系中,圆
,曲线
的参数方程为
为参数),并以
为极点,
轴正半轴为极轴建立极坐标系.
(1)写出的极坐标方程,并将
化为普通方程;
(2)若直线的极坐标方程为
与
相交于
两点,
求的面积(
为圆
的圆心).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
(
)的左右焦点分别为
,
,若椭圆上一点
满足
,且椭圆
过点
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆的方程;
(2)过点作
轴的垂线,交椭圆
于
,求证:
,
,
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的离心率为
,以椭圆长、短轴四个端点为顶点为四边形的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为、
,当动点
在定直线
上运动时,直线
分别交椭圆于两点
、
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为( )
A. 300,B. 300,
C. 60,
D. 60,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,
,…,
为取自某总体的样本,其算术平均值称为样本均值,一般用
表示,即
,在分组样本场合,样本均值的近似公式为
,其中k为组数,
为第i组的组中值,
为第i组的频数.某单位收集到20名青年的某天娱乐支出费用数据:
79 84 84 88 92 93 94 97 98 99
100 101 101 102 102 108 110 113 118 125
若将分为五组,第一组为,根据分组样本计算样本均值为( )
A.99.4B.143.16C.100D.11.96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com