【题目】已知函数f(x)=
(a>0).
(1)证明函数f(x)在(0,2]上是减函数,(2,+∞)上是增函数;
(2)若方程f(x)=0有且只有一个实数根,判断函数g(x)=f(x)﹣4的奇偶性;
(3)在(2)的条件下探求方程f(x)=m(m≥8)的根的个数.
参考答案:
【答案】
(1)证明:由题意:f(x)=x+
+a,
∴f′(x)=
,
∴0<x<2时,f′(x)<0,x>2时,f′(x)>0,
∴函数f(x)在(0,2]上是减函数,(2,+∞)上是增函数
(2)解:由题意知方程x2+ax+4=0有且只有一个实数根
∴△=a2﹣16=0,
又a>0,∴a=4.
此时f(x)=x+
+4,g(x)=x+
,
又g(x)的定义域为(﹣∞,0)∪(0,+∞)关于原点对称,
且g(﹣x)=﹣x﹣
=﹣g(x),
∴g(x)是奇函数
(3)解:由(2)知f(x)=m可化为x+
=m﹣4(m≥8)
又由(1)(2)知:
当m﹣4=4 即m=8时f(x)=m只有一解
当m﹣4>4即m>8时f(x)=m有两解
综上,当m=8时f(x)=m只有一解;当m>8时f(x)=m有两解
【解析】(1)利用导数的正负,即可证明;(2)求出g(x)=x+
,又g(x)的定义域为(﹣∞,0)∪(0,+∞)关于原点对称,利用奇函数的定义进行判断;(3)由(2)知f(x)=m可化为x+
=m﹣4(m≥8),再分类讨论,即可得出结论.
【考点精析】解答此题的关键在于理解奇偶性与单调性的综合的相关知识,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知圆G:x2﹣x+y2=0,经过抛物线y2=2px的焦点,过点(m,0)(m<0)倾斜角为
的直线l交抛物线于C,D两点. (Ⅰ)求抛物线的方程;
(Ⅱ)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
+y2=1的左右焦点分别为F1 , F2 , 直线l过椭圆的右焦点F2与椭圆交于A,B 两点, (Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为
的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入﹣管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大? -
科目: 来源: 题型:
查看答案和解析>>【题目】设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( ) ①
;②
;
③
;④
.
A.①和②
B.②和③
C.③和④
D.①和④ -
科目: 来源: 题型:
查看答案和解析>>【题目】某青少年成长关爱机构为了调研所在地区青少年的年龄与身高壮况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1000个,根据各年龄段平均身高作出如图所示的散点图和回归直线
.根据图中数据,下列对该样本描述错误的是( )
A. 据样本数据估计,该地区青少年身高与年龄成正相关
B. 所抽取数据中,5000名青少年平均身高约为

C. 直线
的斜率的值近似等于样本中青少年平均身高每年的增量D. 从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线
上 -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
已知
,在直角坐标系
中,直线
的参数方程为
(
为参数);在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程是
.(Ⅰ)求证:
;(Ⅱ)设点
的极坐标为
,
为直线
,
的交点,求
的最大值.
相关试题