【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
|
|
|
|
| |
|
| |
| 12 |
|
|
| |
| 4 |
|
|
| |
合计 |
|
根据上面图表,求
处的数值
在所给的坐标系中画出
的频率分布直方图;
根据题中信息估计总体平均数,并估计总体落在
中的概率.
![]()
参考答案:
【答案】(1)① 1 ② 0.025; ③ 0.1 ④ 1
(2)略
(3)0.315
【解析】
根据直方图可以看出
对应的频率是
,当频率是
时,对应的频数是12,按照比例作出
的结果,用1减去其他的频率得到
的结果,
是合计,每一个表中这个位置都是1;
根据上一问补充完整的频率分布表,画出频率分步直方图;
估计总体落在
中的概率,利用组中值算得平均数,总体落在
上的概率为
,得到结果.
根据直方图可以看出
对应的频率是
,
当频率是
时,对应的频数是12,按照比例作出
的结果,
用1减去其他的频率得到
的结果,
处是合计1,
;
;
;![]()
根据频率分布表得到频率分布直方图如图.
![]()
利用组中值算得平均数为:
![]()
;
故总体落在
上的概率为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知某运动员每次投篮命中的概率等于
.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是
或
作品获得一等奖”;乙说:“
作品获得一等奖”;丙说:“
,
两项作品未获得一等奖”;丁说:“是
作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(
吨)与相应的生产能耗
(吨)标准煤的几组对照数据:
3
4
5
6

2.5
3
4
4.5

(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式
,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
图像上有一最低点
,若图像上各点纵坐标不变,横坐标缩为原来的
倍,再向左平移
个单位得
,又
的所有根从小到大依次相差
个单位,则
的解析式为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.(Ⅰ)求曲线
,
的标准方程;(Ⅱ)若点
,
在曲线
上,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的一元二次方程
.(1)若
,
,求方程
有实根的概率;(2)若
,
,求方程
有实根的概率.
相关试题