【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(第x周)和市场占有率(y﹪)的几组相关数据如下表:
| 1 | 2 | 3 | 4 | 5 |
| 0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅰ)根据表中的数据,用最小二乘法求出
关于
的线性回归方程
;
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测在第几周,该款旗舰机型市场占有率将首次超过 0.40﹪(最后结果精确到整数).
参考公式:
,![]()
参考答案:
【答案】(1)
(2)所以自上市起经过12个周,该款旗舰机型市场占有率能超过
﹪
【解析】试题分析:(Ⅰ)根据表中数据计算
,计算回归系数,写出线性回归方程;
(Ⅱ)根据回归方程得出上市时间与市场占有率的关系,列出不等式求出解集即可预 测结果.
试题解析:(Ⅰ)由题中的数据可知:
,
,
所以
关于
的线性回归方程:
(Ⅱ)由(Ⅰ)知,
,解得
,
所以自上市起经过12个周,该款旗舰机型市场占有率能超过
﹪
-
科目: 来源: 题型:
查看答案和解析>>【题目】
某园艺公司种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了
棵树苗的高度(单位:厘米),并把这些高度列成如下的频数分布表:组别






频数
2
4
11
16
13
4
(Ⅰ)在这批树苗中任取一棵,其高度在
厘米以上的概率大约是多少?这批树苗的平均高度大约是多少?(Ⅱ)为了进一步获得研究资料,标记
组中的树苗为
,
组中的树苗为
,现从
组中移出一棵树苗,从
组中移出两棵树苗进行试验研究,则
组的树苗
和
组的树苗
同时被移出的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式ax2+(1﹣a)x﹣1>0
(1)当a=2时,求不等式的解集.
(2)当a>﹣1时.求不等式的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosC﹣
=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),
表示购机的同时购买的易损零件数.(Ⅰ)若
=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于
”的频率不小于0.5,求
的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
-
科目: 来源: 题型:
查看答案和解析>>【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)证明:数列{
}是等差数列;
(Ⅱ)设bn=3n
,求数列{bn}的前n项和Sn . -
科目: 来源: 题型:
查看答案和解析>>【题目】2016年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速
分成六段:
,
,
,
,
,
后得到如图的频率分布直方图.
(I)某调查公司在采样中,用到的是什么抽样方法?
(II)求这40辆小型车辆车速的众数、中位数及平均数的估计值;
(III)若从车速在
的车辆中任抽取2辆,求车速在
的车辆至少有一辆的概率.
相关试题