【题目】当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
两边同时积分得:
dx+
xdx+
x2dx+…+
xndx+…=
dx
从而得到如下等式:1×
+
×(
)2+
×(
)3+…+
×(
)n+1+…=ln2
请根据以上材料所蕴含的数学思想方法,计算:
×
+
×(
)2+
×(
)3+…+
×(
)n+1= .
参考答案:
【答案】![]()
【解析】解:二项式定理得Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n ,
对Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n
两边同时积分得:
从而得到如下等式:
=
所以答案是:
.
【考点精析】根据题目的已知条件,利用归纳推理的相关知识可以得到问题的答案,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级
名学生中进行了抽样调查,发现喜欢甜品的占
.这
名学生中南方学生共
人。南方学生中有
人不喜欢甜品.(1)完成下列
列联表:喜欢甜品
不喜欢甜品
合计
南方学生
北方学生
合计
(2)根据表中数据,问是否有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(3)已知在被调查的南方学生中有
名数学系的学生,其中
名不喜欢甜品;有
名物理系的学生,其中
名不喜欢甜品.现从这两个系的学生中,各随机抽取
人,记抽出的
人中不喜欢甜品的人数为
,求
的分布列和数学期望.附:
.
0.15
0.100
0.050
0.025
0.010

2.072
2.706
3.841
5.024
6.635
-
科目: 来源: 题型:
查看答案和解析>>【题目】某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数
关于昼夜温差
的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?
参考公式:回归直线的方程
,其中
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代著名的
周髀算经
中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷
长一丈三尺五寸,夏至晷长一尺六寸
意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为
分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分
则“立春”时日影长度为


A.
分B.
分C.
分D.
分 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知锐角
的外接圆的半径为1,
,则
的面积的取值范围为_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(1)讨论
的单调性;(2)若
有两个极值点
,
,且
,证明:
.
相关试题