【题目】如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=
a,
![]()
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
参考答案:
【答案】(1)见解析(2)见解析(3)![]()
【解析】(1)证明:∵PD=a,DC=a,PC=
a,∴PC2=PD2+DC2,
∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.
(2)证明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四边形ABCD是正
方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC平面PAC,
∴平面PAC⊥平面PBD.
(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=
.
在Rt△PDO中,tan∠POD=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.

(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
.(1)当
(
为自然对数的底数)时,求
的最小值;(2)讨论函数
零点的个数;(3)若对任意
恒成立,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
,
.(1)若函数
在
处有极值,求函数
的最大值;(2)①是否存在实数
,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;②证明:不等式
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
、
是两条公路(近似看成两条直线),
,在
内有一纪念塔
(大小忽略不计),已知
到直线
、
的距离分别为
、
,
=6千米,
=12千米.现经过纪念塔
修建一条直线型小路,与两条公路
、
分别交于点
、
.(1)求纪念塔
到两条公路交点
处的距离;(2)若纪念塔
为小路
的中点,求小路
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推行“微课、翻转课堂”教学法,某数学老师分别用传统教学和“微课、翻转课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:
记成绩不低于70分者为“成绩优良”.

(1)由以上统计数据填写下面
列联表,并判断“成绩优良与教学方式是否有关”?
附:

临界值表:

(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为
,求
的分布列及数学期望.
相关试题