【题目】过点
作一直线与抛物线
交于
,
两点,点
是抛物线
上到直线
的距离最小的点,直线
与直线
交于点
.
![]()
(Ⅰ)求点
的坐标;
(Ⅱ)求证:直线
平行于抛物线的对称轴.
参考答案:
【答案】(Ⅰ)
(Ⅱ)详见解析
【解析】
试题分析:(Ⅰ)到直线
距离最小的点,可根据点到直线距离公式,取最小值时的点;也可根据几何意义得为与直线
平行且与抛物线相切的切点:如根据点
到直线
的距离
得当且仅当
时取最小值,(Ⅱ)要证直线
平行于抛物线的对称轴,就是要证
两点纵坐标相等,设点
,求出直线AP方程
,与直线
方程联立,解出点
纵坐标为
.同理求出直线AB方程
,与抛物线方程联立,解出点
纵坐标为
.
试题解析:(Ⅰ)设点
的坐标为
,则
,
所以,点
到直线
的距离
.
当且仅当
时等号成立,此时
点坐标为
.………………………………4分
(Ⅱ)设点
的坐标为
,显然
.
当
时,
点坐标为
,直线
的方程为
;
当
时,直线
的方程为
,
化简得
;
综上,直线
的方程为
.
与直线
的方程
联立,可得点
的纵坐标为
.
当
时,直线
的方程为
,可得
点的纵坐标为
.
此时
,
即知
轴,
当
时,直线
的方程为
,
化简得
,
与抛物线方程
联立,消去
,
可得
,
所以点
的纵坐标为
.
从而可得
轴,
所以,
轴.……………………………………13分
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,摩天轮的半径为
米,点
距地面高度为
米,摩天轮做匀速运动,每
分钟转一圈,以点
为原点,过点
且平行与地平线的直线为
轴建立平面直角坐标系
,设点
的起始位置在最低点(且在最低点开始时),设在时刻
(分钟)时点
距地面的高度
(米),则
与
的函数关系式
__________.在摩天轮旋转一周内,点
到地面的距离不小于
米的时间长度为 __________(分钟)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了
组数据作为研究对象,如下图所示(
(吨)为该商品进货量,
(天)为销售天数):
(Ⅰ)根据上表数据在下列网格中绘制散点图:
(Ⅱ)根据上表提供的数据,求出
关于
的线性回归方程
;(Ⅲ)根据(Ⅱ)中的计算结果,若该商店准备一次性进货该商品
吨,预测需要销售天数;参考公式和数据:



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形
中,点
,
分别是
,
的中点,将
分别沿
,
折起,使
两点重合于
.
(Ⅰ)求证:平面
;(Ⅱ)求四棱锥
的体积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校对高二年段的男生进行体检,现将高二男生的体重
数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组
的人数为200.根据一般标准,高二男生体重超过
属于偏胖,低于
属于偏瘦.观察图形的信息,回答下列问题:
(1)求体重在
内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取
人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为
,
,
,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,
,设
.(1)求函数
的最小正周期;(2)由
的图象经过怎样变换得到
的图象?试写出变换过程;(3)当
时,求函数
的最大值及最小值.
相关试题