【题目】已知函数f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0对任意的θ∈(0,
)恒成立,则实数m的取值范围为 .
参考答案:
【答案】[﹣
,+∞)
【解析】解:由f(x)=sinx﹣x可知,f(x)定义域为R,且为奇函数;
∵f'(x)=cosx﹣1≤0,则f(x)在R上单调递减;
f(cos2θ+2msinθ)+f(﹣2﹣2m)>0 即:f(cos2θ+2msinθ)>f(2m+2);
根据函数单调性有:cos2θ+2msinθ<2m+2 ①;
sinθ=t∈(0,1),1﹣t>0,①式则:1﹣t2+2mt<2m+2;
﹣1﹣t2<2m(1﹣t);
m>
=﹣
[(1﹣t)+
﹣2]
∵u=(1﹣t)+
﹣2 在(0,1)上单调递减,u(0)=1
∴m
﹣
所以答案是:[﹣
,+∞)
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
,
,
,
,
,分别加以统计,得到如图所示的频率分布直方图.
(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);
(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至多抽到一名“25周岁以下组”工人的概率。
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费。为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
,
…,
分成9组,制成了如图所示的频率分布直方图。
(1)求直方图中
的值;(2)设该市有60万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使82%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由。 -
科目: 来源: 题型:
查看答案和解析>>【题目】设集合A={x|﹣1≤x≤2},B={x|x2﹣x+(m﹣m2)<0}.
(1)当m<
时,化简集合B;
(2)p:x∈A,命题q:x∈B,且命题p是命题q的必要不充分条件,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,
)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于1050元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=sin2ωx+2
sinωxcosωx﹣cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为
.
(1)求f(
)的值;
(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为(
,0),当m取得最小值时,求g(x)的单调递增区间.
相关试题