【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足![]()
, ,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是( )
A.(
,
)
B.(
,3)
C.(
, 1)
D.(
, 1)
参考答案:
【答案】C
【解析】解:由题意可知,∵f(x)=x3﹣x2+a,f′(x)=3x2﹣2x
在区间[0,a]存在x1 , x2(a<x1<x2<b),
满足f′(x1)=f′(x2)=
=a2﹣a,
∵f(x)=x3﹣x2+a,
∴f′(x)=3x2﹣2x,
∴方程3x2﹣2x=a2﹣a在区间(0,a)有两个不相等的解.
令g(x)=3x2﹣2x﹣a2+a,(0<x<a)
则
,
解得;
.
∴实数a的取值范围是(
, 1)
故选:C
【考点精析】认真审题,首先需要了解导数的几何意义(通过图像,我们可以看出当点
趋近于
时,直线
与曲线相切.容易知道,割线
的斜率是
,当点
趋近于
时,函数
在
处的导数就是切线PT的斜率k,即
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(I)讨论函数的单调性,并证明当
时,
;(Ⅱ)证明:当
时,函数
有最小值,设
最小值为
,求函数
的值域. -
科目: 来源: 题型:
查看答案和解析>>【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段。现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)
频数(人数)
频率
[60,70)
①
0.16
[70,80)
22
②
[80,90)
14
0.28
[90,100]
③
④
合 计
50
1
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖。如果前三道题都答错,就不再答第四题。某同学进入决赛,每道题答对的概率
的值恰好与频率分布表中不少于80分的频率的值相同.①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为
,求
的分布列及数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】集合A={x|
≤0,x∈R},B={x||x﹣1|<2,x∈R}.
(1)求A,B;
(2)求B∩(UA). -
科目: 来源: 题型:
查看答案和解析>>【题目】某农户计划建造一个室内面积为800m2的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m宽的通道,沿前侧保留3m的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最大?并求出最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.
(1)求A,B;
(2)若A∩B=B,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学习兴趣小组开展“学生语文成绩与外语成绩的关系”的课题研究,考察该校高二年级800名学生上学期期末的语文和外语成绩,按是否优秀分类得结果:语文和外语成绩都优秀的有60人,语文成绩优秀但外语成绩不优秀的有140人,外语成绩优秀但语文成绩不优秀的有100人.
(Ⅰ)能否有
的把握认为“该校学生语文成绩优秀与外语成绩是否优秀有关系”?(Ⅱ)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记所抽取的成绩中,语文、外语两科成绩至少有一科优秀的人数为
,求
的分布列和数学期望
.附:
.
相关试题