【题目】下列命题正确的个数是( )
①命题“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量
与
的夹角是钝角”的充分必要条件是“
<0”.
A.1
B.2
C.3
D.4
参考答案:
【答案】B
【解析】解:(1)根据特称命题的否定是全称命题,
∴(1)正确;(2)f(x)=cos2ax﹣sin2ax=cos2ax,最小正周期是
=πa=±1,
∴(2)正确;(3)例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2xmax=4,
∴(3)不正确;(4)∵
,当θ=π时,
<0.
∴(4)错误.
∴正确的命题是(1)(2).
故选:B
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记f(x)的最大值为A.
(1)求f′(x);
(2)求A;
(3)证明:|f′(x)|≤2A. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的不等式
的解集为
,则关于
的不等式
的解集为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】将函数y=
cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )
A.
B.
C.
D.
相关试题