【题目】中,角的对边分别为,且的面积,向量.

(Ⅰ)求大小;

(Ⅱ)求的取值范围.


参考答案:

【答案】(1);(2).

【解析】试题分析(Ⅰ)利用三角形的面积公式化简已知等式的左边,利用余弦定理表示出,变形后代入等式的右边,利用同角三角函数间的基本关系弦化切整理后求出的值,为三角形的内角,利用特殊角的三角函数值即可求出的度数;(Ⅱ)由的度数,利用三角形的内角和定理表示出的度数,表示出,代入所求的式子中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,合并后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据的范围求出这个角的范围,利用正弦函数的图象与性质得出此时正弦函数的值域,即可得到所求式子的范围.

试题解析:(Ⅰ)由余弦定理

另一方面于是有

解得

(Ⅱ)

,∴

关闭