【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DE∥AB,AB为短轴,OC为长半轴
(1)求梯形ABDE上底边DE与高OH长的关系式;
(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围
![]()
参考答案:
【答案】(1)
;(2)![]()
【解析】试题分析:
(1)以
所在直线为
轴,
所在直线为
轴,建立直角坐标系,可得半椭圆的方程:
,设点
,由
且
,可得
。(2))设半椭圆上一点为
由条件得
故
,结合对称轴
得到
,从而
,即为所求范围。
试题解析:
(1)以
所在直线为
轴,
所在直线为
轴,建立直角坐标系
半椭圆的方程:
,
设椭圆上点
,
所以
且
,
所以
.
(2)设半椭圆上一点为![]()
由题可知点![]()
所以
,
又函数
图象的对称轴为
,
所以![]()
解得![]()
所以![]()
由(1)知![]()
所以底边DE的取值范围为![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC
(1)求三棱锥D-ABC的体积
(2)求证:平面DAC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=
CA,求证:MN∥平面DEF
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,点A(1,1),B(0,﹣2),C(4,2),D为AB的中点,DE∥BC. (Ⅰ)求BC边上的高所在直线的方程;
(Ⅱ)求DE所在直线的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超过
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
,
,
,
分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中
的值;(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为
,求
的分布列与数学期望.(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准
(吨),估计
的值(精确到0.01),并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
,过点
作直线
交圆
于
两点,分别过
两点作圆的切线,当两条切线相交于点
时,则点
的轨迹方程为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
-
科目: 来源: 题型:
查看答案和解析>>【题目】求经过三点A(1,4),B(﹣2,3),C(4,﹣5)的圆的方程.
相关试题