【题目】过点M(﹣2,0)的直线l与椭圆x2+2y2=2交于P1 , P2 , 线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2 , 则k1k2等于( )
A.﹣2
B.2
C.![]()
D.﹣ ![]()
参考答案:
【答案】D
【解析】解:设直线l的方程为
y=k1(x+2),代入x2+2y2=2,得(1+2k12)x2+8k12x+8k12﹣2=0,所以x1+x2=﹣
,
而y1+y2=k1(x1+x2+4)=
,
所以OP的斜率k2=
=﹣
,
所以k1k2=﹣
,
故选D.
设直线l的方程为y=k1(x+2),代入x2+2y2=2,得(1+2k12)x2+8k12x+8k12﹣2=0,然后由根与系数的关系求解能够得到k1k2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x|x﹣a|+2x.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;
(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y2=4
x的交点为椭圆
(a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C,D(异于A,B)两点. 
(1)求椭圆标准方程;
(2)求四边形ADBC的面积的最大值;
(3)若M(x1 , y1)N(x2 , y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足
(其中O为坐标原点),是否存在两定点F1 , F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移
个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知E,F分别是棱长为1的正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知集合A={x|f(x)=lg(x﹣1)+
},集合B={y|y=2x+a,x≤0}.
(1)若a=
,求A∪B;
(2)若A∩B=,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2
的直线交抛物线于A(x1 , y1)和B(x2 , y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若
,求λ的值.
相关试题