【题目】如图:已知AB∥CD,EF⊥AB于点O,∠FGC=125°,求∠EFG的度数.
![]()
下面提供三种思路:
(1)过点F作FH∥AB;
(2)延长EF交CD于M;
(3)延长GF交AB于K.
请你利用三个思路中的两个思路,
将图形补充完整,求∠EFG的度数.
解(一):
解(二):
参考答案:
【答案】见解析
【解析】
试题分析:(一)过点F作FH∥AB,求出∠EFH,求出∠GFH,相加即可;
(二)延长EF交CD于M,求出∠GMF、根据三角形外角性质求出∠GFM,即可求出答案.
解:(一)![]()
利用思路(1)过点F 作FH∥AB,
∵EF⊥AB,
∴∠BOF=90°,
∵FH∥AB,
∴∠HFO=∠BOF=90°,
∵AB∥CD,
∴FH∥CD,
∴∠FGC+∠GFH=180°,
∵∠FGC=125°,
∴∠GFH=55°,
∴∠EFG=∠GFH+∠HFO=55°+90°=145°;
解:(二)![]()
利用思路(2)延长EF交CD于M,
∵EF⊥AB,
∴∠BOF=90°,
∵CD∥AB,
∴∠CMF=∠BOF=90°,
∵∠FGC=125°,
∴∠1=55°,
∵∠1+∠2+∠GMF=180°,
∴∠2=35°,
∵∠GFO+∠2=180°,
∴∠GFO=145°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简并求值:
﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2. -
科目: 来源: 题型:
查看答案和解析>>【题目】海图中,如果用1cm表示20 n mile,那么32 n mile在图上显示为________cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程ax﹣6=2的解为=﹣2,则a= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积.
方法1: ;
方法2: ;
(2)观察图2请你写出下列三个代数式:(m+n)2,(m-n)2,mn之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:
,
,求:
的值;②已知:
,
,求:
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数的图象与x轴交与A(4,0),并且OA=OC=4OB,点P为过A、B、C三点的抛物线上一动点.

(1)、求点B、点C的坐标并求此抛物线的解析式;
(2)、是否存在点P,使得△ACP是以点C为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,说明理由;
(3)、过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:2x2﹣2y2= .
相关试题