【题目】如图,已知
,
,点
是线段
上一点(不与端点
重合),
、
分别平分
和
交
于点
、
.
![]()
(1)请说明:
;
(2)当点
在
上移动时,请写出
和
之间满足的数量关系为______;
(3)若
,则当点
移动到使得
时,请直接写出
______(用含
的代数式表示).
参考答案:
【答案】(1)见解析;(2)∠BQE=2∠BNE,证明见解析;(3)∠BEQ=
,证明见解析.
【解析】
(1)根据
,可证明
,从而可证明∠1=∠DBC,根据
可证明
,从而证明BD//EF;
(2)通过角平分线和平行线的性质可证明∠BNE=∠NEQ,通过三角形的外角定理可证明∠BQE=2∠BNE;
(3)通过
和三角形内角和定理可证明∠BEM=∠BNE,由(1)中∠BNE=∠NEQ可得∠BEM=∠NEQ,所以∠BEQ=∠MEN,通过角平分线的性质可得∠MEN=
=
,即∠BEQ=
.
(1)证明:
,
,
,
又
,
,
∴BD//EF.
(2)∠BQE=2∠BNE,证明如下:
∵BD//EF
∴∠FEN=∠BNE
又∵EN平分∠QEF,
∴∠FEN=∠NEQ,
∴∠BNE=∠NEQ,
∵∠BNE+∠NEQ=∠BQE,
∴∠BQE=2∠BNE.
(3)∠BEQ=
,证明如下:
∵EN平分∠QEF,
∴∠NEQ=
,
同理可得∠QEM=
,
∴∠MEN=
,
∵
,
∴∠2=
,
∴∠BEF=180°-
,
∴∠MEN=
,
在△BEM中,∠CBD+∠BME+∠BEM=180°,
在△BEN中,∠CBD+∠BNE+∠BEN=180°,
∵
,
∴∠BEM=∠BNE,
∵由(1)得∠BNE=∠NEQ,
∴∠BEM=∠NEQ,
∴∠BEQ=∠BEM+∠MEQ=∠NEQ+∠MEQ=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.
(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?
(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度数;
⑵若点F是AC的中点,求证:∠CFD=
∠B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
-
科目: 来源: 题型:
查看答案和解析>>【题目】基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.
探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;
(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;
联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:

(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
相关试题