【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.
![]()
根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为( )
A. 2018 B. 2017 C. 55 D. 45
参考答案:
【答案】D
【解析】
根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.
找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;
不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)10第三项系数为1+2+3+…+9=45.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.

(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)在直线l上找一点P,使PB′+PC的长最短;
(3)若△ACM是以AC为腰的等腰三角形,点M在小正方形的顶点上.这样的点M共有 个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
经过点A(
,0),B(
,0),且与y轴相交于点C.(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发(点P不与点A、B重合,点Q不与点B、C重合),分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t为何值时,△PBQ是直角三角形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是( )

A.
B. 1 C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】若等腰三角形腰长为2,有一个内角为80°,则它的底边长上的高为__.(精确到0.01,参考数据:sin50°≈0.766;sin80°≈0.985)
-
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数y=
(1≤x≤8)的图象记为曲线C1,将C1沿y轴翻折,得到曲线C2,直线y=-x+b 与C1 ,C2一共只有两个公共点,则b的取值范围是______________________.
相关试题