【题目】在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:
![]()
问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为 ;
问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:
①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.
成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?
参考答案:
【答案】(1)
;(2)①见解析;②见解析;(3)周长L 取最大值时点E和点B重合或BE=4,取最小值时BE=2.
【解析】
(1)先利用等边三角形判断出BD=CD=
AB,进而判断出BE=
BD,再判断出∠DFC=90°,得出CF=
CD,即可得出结论;
(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;
②由(1)知,BG+CH=
AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;
(3)由(1)(2)判断出L=2DE+12,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.
解:(1)∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC,
∵点D是BC的中点,
∴BD=CD=
BC=
AB,
∵∠DEB=90°,
∴∠BDE=90°-∠B=30°,
在Rt△BDE中,BE=
BD,
∵∠EDF=120°,∠BDE=30°,
∴∠CDF=180°-∠BDE-∠EDF=30°,
∵∠C=60°,
∴∠DFC=90°,
在Rt△CFD中,CF=
CD,
∴BE+CF=
BD+
CD=
BC=
AB,
∵BE+CF=nAB,
∴n=
,
故答案为:
;
(2)如图,
![]()
①过点D作DG⊥AB于G,DH⊥AC于H,
∴∠DGB=∠AGD=∠CHD=∠AHD=90°,
∵△ABC是等边三角形,
∴∠A=60°,
∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,
∵∠EDF=120°,
∴∠EDG=∠FDH,
∵△ABC是等边三角形,且D是BC的中点,
∴∠BAD=∠CAD,
∵DG⊥AB,DH⊥AC,
∴DG=DH,
在△EDG和△FDH中,
,
∴△EDG≌△FDH(ASA),
∴DE=DF,
即:DE始终等于DF;
②同(1)的方法得,BG+CH=
AB,
由①知,△EDG≌△FDH(ASA),
∴EG=FH,
∴BE+CF=BG-EG+CH+FH=BG+CH=
AB,
∴BE与CF的和始终不变;
(3)由(2)知,DE=DF,BE+CF=
AB,
∵AB=8,
∴BE+CF=4,
∴四边形DEAF的周长为L=DE+EA+AF+FD
=DE+AB-BE+AC-CF+DF
=DE+AB-BE+AB-CF+DE
=2DE+2AB-(BE+CF)
=2DE+2×8-4
=2DE+12,
∴DE最大时,L最大,DE最小时,L最小,
当DE⊥AB时,DE最小,L最小,
此时∠BDE=90°-60°=30°,
BE=
BD=2,
当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,
∵∠B=60°,
∴∠B=∠BDE=∠BED=60°,
∴△BDE是等边三角形,
∴BE=DE=BD=
AB=4,
当点E和点B重合时,DE=BD=4,周长L 有最大值,
即周长L 取最大值时点E和点B重合或BE=4,取最小值时BE=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
、
分别为
、
边上的点,
,
与
相交于点
,则下列结论一定正确的是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”
判断下列两个命题是真命题还是假命题
填“真”或“假”
等边三角形必存在“和谐分割线”
如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题
是______命题,命题
是______命题;
如图2,
,
,
,
,试探索
是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.
如图3,
中,
,若线段CD是
的“和谐分割线”,且
是等腰三角形,求出所有符合条件的
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为
,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:
(1)在刚出发时,我公安快艇距走私船多少海里?
(2)计算走私船与公安艇的速度分别是多少?
(3)求出l1,l2的解析式.
(4)问6分钟时,走私船与我公安快艇相距多少海里?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.

相关试题