【题目】将抛物线y=x2﹣2向上平移4个单位,再向右平移3个单位,得到新的抛物线,那么新的抛物线的表达式是______.
参考答案:
【答案】y=(x﹣3)2+2
【解析】
根据“上加下减,左加右减”的平移规律求得新的抛物线解析式即可.
解:将抛物线y=x2﹣2向上平移4个单位,再向右平移3个单位,得到新的抛物线解析式为:y=(x﹣3)2﹣2+4,即y=(x﹣3)2+2.
故答案是:y=(x﹣3)2+2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是请给出证明,
(3)在(2)的条件下,求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比S△ADE∶S△ABC∶ S△AMN.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(3
,75);
④快递车从乙地返回时的速度为90千米/时,
以上4个结论正确的是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2018次相遇在___边上.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,P是AB上一动点(但不与A、B两点重合),DP的延长线交CB延长线于点E.
(1)△APD与△BPE是否总相似,为什么?
(2)当P为AB中点时,求证:点B是EC中点.
(3)当PD⊥AB时,设AD=10,sinA=
,求BE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
的对称轴为
轴,且经过(0,0),(
)两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求
的值; (2)求证:点P在运动过程中,⊙P始终与
轴相交;(3)设⊙P与
轴相交于M
,N
(
<
)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=115°,∠EOF =155°,OA平分∠EOC,OB平分∠DOF,

(1)求∠AOE+∠FOB度数;
(2)求∠COD度数。
相关试题