【题目】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.
![]()
参考答案:
【答案】见解析
【解析】试题分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OB
H=∠ODC,然后根据等角的余角相等证明即可.
试题解析:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=
BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线 y 2x 6 与 x 轴的交点坐标是______________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】ABC与DEF的相似比为1:3,则ABC与DEF的面积比为( )
A. 1:3 B. 1:6 C. 1:9 D. 1:16
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=
BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

证明过程如下:
证明:过点E作EF∥AB,
∵AB∥DC,EF∥AB(辅助线的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果点E运动到图②所示的位置,其他条件不变,∠B,∠C,∠BEC又有什么关系?并证明你的结论;
(3)如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(写出结论,不用写计算过程)。
-
科目: 来源: 题型:
查看答案和解析>>【题目】武汉某日最高气温5℃,最低-2℃,最高气温比最低气温高()
A. 3℃ B. 7℃ C. -3℃ D. -7℃
-
科目: 来源: 题型:
查看答案和解析>>【题目】一块边长为x cm的正方形地砖,因需要被裁掉一块2cm宽的长条,问剩下部分的面积是多少?
相关试题