【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如右图所示),设这个苗圃园垂直于墙的一边长为x米.
⑴若苗圃园的面积为72平方米,求x;
⑵若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
⑶当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
![]()
参考答案:
【答案】(1)x1=3,x2=12(2)①当x=
时, S最大=
; ②当x=11时, S最小=11×(30-22)=88.(3)5≤x≤10.
【解析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30-2x)=-2x2+30x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.
解:(1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程
x(30-2x)=72,即x2-15x+36=0.
解得x1=3,x2=12.
(2)依题意,得8≤30-2x≤18.解得6≤x≤11.
面积S=x(30-2x)=-2(x-
)2+
(6≤x≤11).
①当x=
时,S有最大值,S最大=
;
②当x=11时,S有最小值,S最小=11×(30-22)=88.
(3)令x(30-2x)=100,得x2-15x+50=0.
解得x1=5,x2=1
∴x的取值范围是5≤x≤10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点C在x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点C的坐标为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简2a3+a2a的结果等于( )
A.3a3
B.2a3
C.3a6
D.2a6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在□ABCD中,E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是( )

①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
⑴画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
⑵画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
⑶在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
【探究证明】
⑴请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
⑵如图2,求证:∠OAB=∠OAE′.

图1(n=4) 图2(n=5) 图3(n=6) 图n
【归纳猜想】
⑶图1、图2中的“叠弦角”的度数分别为_____________,_________;
⑷图n中,“叠弦三角形”_____________等边三角形(填“是”或“不是”)
⑸图n中,“叠弦角”的度数为______________________(用含n的式子表示)
相关试题