【题目】如图,已知矩形ABCD的长和宽分别为16cm和12cm,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形l1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形l2;…如此操作下去,则l4的面积是cm2 . ![]()
参考答案:
【答案】![]()
【解析】解:∵矩形ABCD的长和宽分别为16cm和12cm,
∴EF=8cm,AE=6cm,
∴菱形l1的面积=
×8×6=24cm2 ,
同理,菱形l2的面积=
×4×3=6cm2 ,
则菱形l3的面积=
×2×
=
cm2 ,
∴菱形l4的面积=
×1×
=
cm2 ,
故答案为:
.
根据题意和菱形的面积公式求出菱形l1的面积,根据中点的性质进行计算即可求出菱形l4的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值与x无关,求y的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段AB上有两点C、D,且AC=BD,M、N分别是线段AC 、AD的中点,若AB=a cm ,AC=BD=b cm,且a,b满足(a-9)2+|b-7 |=0.

(1)求AB ,AC的长度;
(2)求线段MN的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:

(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.
(2)点B1的坐标为 ,点C2的坐标为 .
(3)△ABC经过怎样的旋转可得到△A1B2C2, .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB表示路灯,当身高为1.6米的小名站在离路灯1.6的D处时,他测得自己在路灯下的影长DE与身高CD相等,当小明继续沿直线BD往前走到E点时,画出此时小明的影子,并计算此时小明的影长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】两枚正四面体骰子的各面上分别标有数字1,2,3,4,现在同时投掷这两枚骰子,并分别记录着地的面所得的点数为a、b.
(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a=1,b=2),并求出两次着地的面点数相同的概率.b
a1
2
3
4
1
(1,2)
2
3
4
(2)为了验证试验用的正四面体质地是否均匀,小明和他的同学取一枚正四面体进行投掷试验.试验中标号为1的面着地的数据如下:试验总次数
50
100
150
200
250
500
“标号1”的面着地的次数
15
26
34
48
63
125
“标号1”的面着地的频率
0.3
0.26
0.23
0.24
请完成表格(数字精确到0.01),并根据表格中的数据估计“标号1的面着地”的概率是

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.

(1)证明:四边形ADCE为菱形;
(2)证明:DE=BC.
相关试题