【题目】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F. ![]()
(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).
参考答案:
【答案】
(1)解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵AE⊥BD于E,CF⊥BD于F,
∴∠AEB=∠CFD=90°,
∴△ABE≌△CDF(AAS),
∴BE=DF
(2)解:四边形MENF是平行四边形.
证明:由(1)可知:BE=DF,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠MDB=∠NBD,
∵DM=BN,
∴△DMF≌△BNE,
∴NE=MF,∠MFD=∠NEB,
∴∠MFE=∠NEF,
∴MF∥NE,
∴四边形MENF是平行四边形
【解析】(1)根据平行四边形的性质和已知条件证明△ABE≌△CDF即可得到BE=DF;(2)根据平行四边形的判定方法:有一组对边平行且相等的四边形为平行四边形判定四边形MENF的形状.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面直角坐标系中有一点
.(1)点M到y轴的距离为1时,M的坐标?
(2)点
且MN//x轴时,M的坐标? -
科目: 来源: 题型:
查看答案和解析>>【题目】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读了其中的奥秘.
你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:
①
,
,又
,
,
能确定59319的立方根是个两位数.②
59319的个位数是9,又
,
能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,
而
,则
,可得
,由此能确定59319的立方根的十位数是3
因此59319的立方根是39.
(1)现在换一个数110592,按这种方法求立方根,请完成下列填空.
①它的立方根是 位数.
②它的立方根的个位数是 .
③它的立方根的十位数是 .
④110592的立方根是 .
(2)请直接填写结果:
①
;②
; -
科目: 来源: 题型:
查看答案和解析>>【题目】问题情景:
如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.

小明的思路是:
过点P作PE//AB,

∴∠PAB+∠APE=180°.
∵∠PAB=130°,∴∠APE=50°
∵AB//CD,PE//AB,∴PE//CD,
∴∠PCD+∠CPE=180°.
∵∠PCD=120°,∴∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
问题迁移:
如果AB与CD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,∠PCD的度数会跟着发生变化.
(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,∠PCD和∠APC之间的数量关系?并说明理由.

(2)如图4,AQ,CQ分别平分∠PAB,∠PCD,那么∠AQC和角∠APC有怎择的数量关系?

(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,∠PCD,请直接写出∠AQC和角∠APC的数量关系 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.
(1)需租用48座客车多少辆? 解:设需租用48座客车x辆.则需租用64座客车辆.当租用64座客车时,未坐满的那辆车还有个空位(用含x的代数式表示).由题意,可得不等式组:解这个不等式组,得: .
因此,需租用48座客车辆.
(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知ABCD的周长为36cm,过点A作AE⊥BC,AF⊥CD,垂足分别为E、F.若AE=2cm,AF=4cm.求ABCD的各边长.

相关试题