【题目】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把
(a≠0)记作a,读作“a的圈n次方”.
(初步探究)
(1)直接写出计算结果:2③=___,(
)⑤=___;
(2)关于除方,下列说法错误的是___
A.任何非零数的圈2次方都等于1;
B.对于任何正整数n,1=1;
C.3④=4③;
D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(-3)④=___;5⑥=___;(-
)⑩=___.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;
(3)算一算:
÷(
)④×(2)⑤(
)⑥÷![]()
参考答案:
【答案】初步探究:(1)
,8;(2)C;深入思考:(1)
,
,
;(2)
;(3)-5.
【解析】
初步探究:
(1)根据除方运算的定义即可得出答案;
(2)根据除方运算的定义逐一判断即可得出答案;
深入思考:
(1)根据除方运算的定义即可得出答案;
(2)根据(1)即可总结出(2)中的规律;
(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.
解:初步探究:
(1)2③=2÷2÷2=![]()
(
)⑤=![]()
(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;
B:因为多少个1相除都是1,所以对于任何正整数n,1都等于1,故选项B错误;
C:3④=3÷3÷3÷3=
,4③=4÷4÷4=
,3④≠4③,故选项C正确;
D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;
故答案选择:C.
深入思考:
(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=![]()
5⑥=5÷5÷5÷5÷5÷5=![]()
(-
)⑩=![]()
(2)a=a÷a÷a…÷a=![]()
(3)原式=![]()
=![]()
=![]()
=-5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在数轴上A点表示数
,B点表示数
,
、
满足|
|+|
|=0;
(1)点A表示的数为_____;点B表示的数为_____;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
当t=3时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列函数中图象不经过第三象限的是( )
A.y=﹣3x﹣2B.y=
C.y=﹣
x+1D.y=3x+2 -
科目: 来源: 题型:
查看答案和解析>>【题目】在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.

(1)圆心O到CD的距离是______;
(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.

(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】按一定规律排列的一列数依次为:-2,5,-10,17,-26,…,按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是( )
A. 82,-n2+1B. 82,(-1)n(n2+1)C. -82,(-1)n(n2+1)D. -82,-n2+1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点
为原点,点
表示的数为
,点
表示的数为
,且
满足

(1)
两点对应的数分别为
______,
______;(2)若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;
相关试题