【题目】如图,一个半径为r的圆形纸片在边长为a(
)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是( )![]()
A.![]()
B.![]()
C.![]()
D.πr2
参考答案:
【答案】C
【解析】如图,当圆形纸片运动到与
A的两边相切的位置时,![]()
过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,
连接AO1,则Rt
ADO1中,
O1AD=30
,O1D=r,AD=
r,
∴S
ADO1=
O1D
AD=
r2,由此S四边形ADO1E=2S
ADO1=
r2,
∵由题意,
DO1E=120
,得S扇形O1DE=
r2,
∴圆形纸片“不能接触到的部分”的面积是3(
r2-
r2)=(
)r2 .
所以答案是:C.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )

A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是( )

A. 每分钟进水5升
B. 每分钟放水1.25升
C. 若12分钟后只放水,不进水,还要8分钟可以把水放完
D. 若从一开始进出水管同时打开需要24分钟可以将容器灌满
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABP与
是两个全等的等边三角形,且
,有下列四个结论:①
,②
,③
,④四边形ABCD是轴对称图形,其中正确的有
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CA⊥AB,垂足为 A,AB=24,AC=12,射线 BM⊥AB,垂足为 B, 一动点 E 从 A点出发以 3 厘米/秒沿射线 AN 运动,点 D 为射线 BM 上一动点, 随着 E 点运动而运动,且始终保持 ED=CB,当点 E 经过______秒时,△DEB 与△BCA 全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1 , y2中的较大值记为N;当y1=y2时,N=y1=y2 . 则下列说法:

①当0<x<2时,N=y1;
②N随x的增大而增大的取值范围是x<0;
③取y1 , y2中的较小值记为M,则使得M大于4的x值不存在;
④若N=2,则x=2﹣
或x=1.
其中正确的有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.
(1)求该一次函数的解析式;
(2)直接写出函数图象与两坐标轴的交点坐标.
相关试题