【题目】有这样一道习题:如图1,已知OAOB是⊙O的半径,并且OAOBPOA上任一点(不与OA重合)BP的延长线交⊙OQ,过Q点作⊙O的切线交OA的延长线于R.

1)证明:RP=RQ

2)请探究下列变化:

A变化一:交换题设与结论.已知:如图1OAOB是⊙O的半径,并且OAOBPOA上任一点(不与OA重合)BP的延长线交⊙OQROA的延长线上一点,且RP=RQ.证明:RQ为⊙O的切线.

  

B变化二:运动探求. ①如图2,若OA向上平移,变化一中结论还成立吗?(只交待判断) 答:_________.

②如图3,如果POA的延长线上时,BP交⊙OQ,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?


参考答案:

【答案】1)证明见解析;

2变化一:证明见解析;变化二①结论成立②结论成立,理由见解析.

【解析】试题分析:(1)首先连接OQ,由切线的性质,可得∠OQB+∠BQR=90°,又由OA⊥OB,可得∠OPB+∠B=90°,继而可证得∠PQR=∠BPO=∠RPQ,则可证得RP=RQ,

(2)A、变化一,连接OQ, 证明∠OQR=90°即可;

B、变化二:若OA向上平移,变化一中的结论还成立,证明思路同变化一

②如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立,连接OQ,证明思路同(1);

试题解析:(1)连接OQ,

∵OQ=OB,∴∠OBP=∠OQP,

∵QR⊙O的切线,

∴OQ⊥QR,

∠OQP+∠PQR=90°,

∠OBP+∠OPB=90°,

∠PQR=∠OPB,

∵∠OPB∠QPR为对顶角

∴∠OPB=∠QPR,∴∠PQR=∠QPR

∴RP=RQ;

变化一、连接OQ

∵RP=RQ,

∴∠PQR=∠QPR=∠BPO,

又∵OB=OQ,OA⊥OB,

∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,

∴∠OQB+∠PQR=90°,

即∠OQR=90°,

∴RQ为⊙O的切线;

变化二、(1)结论成立

连接OQ

∵RP=RQ,

∴∠PQR=∠QPR=∠BPM,

又∵OB=OQ,RP⊥OB,

∴∠OQB=∠OBQ,∠OBQ+∠BPM=90°,

∴∠OQB+∠PQR=90°,

即∠OQR=90°,

∴RQ为⊙O的切线;

(2)结论成立,

连接OQ,

∵RQ是⊙O的切线,

∴OQ⊥QR,

∴∠OQB+∠PQR=90°,

∵OA⊥OB,

∴∠OPB+∠B=90°,

又∵OB=OQ,

∴∠OQB=∠B,

∴∠PQR=∠BPO=∠RPQ,

∴RP=RQ.

关闭