【题目】如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,乙车行驶的时间t= 小时;
(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;
(3)直接写出甲车出发多长时间两车相距80千米.
![]()
参考答案:
【答案】(1) 乙车速度为:80千米/时,乙车行驶全程的时间6小时;(2)y=﹣120x+600;(3)甲车出发
小时或3小时或
两车相距80千米
【解析】
(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;
(2)找到甲车到达C地和返回A地时x与y的对应值,利用待定系数法可求出函数解析式;
(3)甲、乙两车相距80千米有两种情况:
①相向而行:相等关系为“甲车行驶路程+乙车行驶路程+甲乙间距离=480”,
②同向而行:相等关系为“甲车距它出发地的路程+乙车路程﹣甲乙间距离=480”
分别根据相等关系列方程可求解.
解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,
∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);
(2)根据题意可知甲从出发到返回A地需5小时,
∵甲车到达C地后因立即按原路原速返回A地,
∴结合函数图象可知,当x=
时,y=300;当x=5时,y=0;
设甲车从C地按原路原速返回A地时,即
≤x≤5,
甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,
将
函数关系式得:
,
解得:
,
故甲车从C地按原路原速返回A地时,
甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600;
(3)由题意可知甲车的速度为:
=120(千米/时),
设甲车出发m小时两车相距80千米,有以下两种情况:
①两车相向行驶时,有:120m+80(m+1)+80=480,
解得:m=
;
②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,
解得:m=3;
③两车相遇之后,甲返回前,有120m+80(m+1)﹣80=480,
解得:m=
;
∴甲车出发
小时或3小时或
两车相距80千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列等式:
第1个等式:
第2个等式:

第3等式:

第4个等式:

请解答下列问题:
(1)按以上规律写出第5个等式:a5= = .
(2)用含n的式子表示第n个等式:an= = (n为正整数).
(3)求a1+a2+a3+a4+…+a2018的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.

证明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.
(1)请写出y关于x的函数关系式;
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是( )

A. ①②③ B. ①②⑤ C. ②③④ D. ②④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为( )平方米.

A. 96 B. 204 C. 196 D. 304
相关试题