【题目】若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是( )
A.80°
B.40°
C.60°
D.120°
参考答案:
【答案】C
【解析】解:∵∠A=80°,∠B=40°, ∴∠C=180°﹣∠A﹣∠B=60°,
∵△ABC≌△DEF,
∴∠F=∠C=60°,
故选C.
【考点精析】认真审题,首先需要了解全等三角形的性质(全等三角形的对应边相等; 全等三角形的对应角相等).
-
科目: 来源: 题型:
查看答案和解析>>【题目】(12分)如图,直角三角形的顶点A、B在x轴上,ABC=90 ,BC//y轴,且C点在第二象限,B点为(-3,0),将直角三角形ABC沿x轴水平向右平移m个单位,得到对应的直角三角形DEF,其中点A、B、C分别对应点D、E、F,求:
(1)用含m的式子表示E点坐标及AD的长度;
(2)若C点为(-3,n),设四边形BEFC的周长为y,试用含m、n的式子表示周长y;
(3)在(2)的条件下,点P和点Q分别以1个单位/秒,2个单位/秒的速度同时从B点出发,其中,P点沿B→C→F→E→B的方向运动,Q点沿B→E→F→C→B的方向运动,相遇时则停止运动。当P点到达C点时,Q点恰到达E点;从B点出发起,6秒后P点与Q点相遇停止了运动,求四边形ADFC的面积。


-
科目: 来源: 题型:
查看答案和解析>>【题目】某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.
请根据统计图表提供的信息,解答下列问题:

(1)参加调查的人数共有 人;在扇形图中,m= ;将条形图补充完整;
(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?
(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形ABCD中,AC、BD交于点E,且∠ACD=∠ADC.
(1)如图1,若AB=AD,求证:∠BAC=2∠BDC;
(2)如图2,在(1)的条件下,若∠BDC=30°,求证:BC=AC.
(3)如图3,若BC=AD,∠BDC=30°,过A作AE⊥BD于E,过C作CF⊥BD于F, 且EF:BE=2:11,DF=9,求BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】因为直角三角形是特殊三角形,所以一般三角形全等的条件都可以用来说明2个直角三角形全等.________(判断对错)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,对称轴为直线x=
的抛物线经过点A(6,0)和B(0,﹣4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.
相关试题