【题目】在数列{an}中,a2=
.
(1)若数列{an}满足2an﹣an+1=0,求an;
(2)若a4=
,且数列{(2n﹣1)an+1}是等差数列,求数列{
}的前n项和Tn .
参考答案:
【答案】
(1)解:∵数列{an}满足2an﹣an﹣1=0,a2=
.
∴an≠0,
=2,∴a1=
.
∴数列{an}是等比数列,公比为2,首项为
.
∴an=
.
(2)解:数列{(2n﹣1)an+1}是等差数列,设公差为d,∵a4=
,a2=
.
∴
+1=
+1+2d,解得d=1.
∴(2n﹣1)an+1=3×
+1+(n﹣2)×1,解得an=
.
∴
=2n﹣1.
∴数列{
}的前n项和Tn=1+3+…+(2n﹣1)
=
=n2.
【解析】(1)数列{an}满足2an﹣an﹣1=0,a2=
.可得an≠0,
=2,利用等比数列的通项公式即可得出an . (2)数列{(2n﹣1)an+1}是等差数列,设公差为d,由a4=
,a2=
.利用等差数列的通项公式可得d.进而可得an . 再利用等差数列的求和公式即可得出.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系
;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=|x﹣a|,a∈R.
(1)当a=1时,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函数g(x)=f(x)﹣|x﹣3|的值域为A,且[﹣1,2]A,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0,
),则下列关于函数g(x)=cos(2x﹣φ)的正确描述是( )
A.g(x)在区间[﹣
]上的最小值为﹣1.
B.g(x)的图象可由函数f(x)向上平移2个单位,在向右平移
个单位得到.
C.g(x)的图象可由函数f(x)的图象先向左平移
个单位得到.
D.g(x)的图象可由函数f(x)的图象先向右平移
个单位得到. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,F1 , F2分别是双曲线
的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(1,
),若△ABF2为等边三角形,则△BF1F2的面积为( ) 
A.1
B.
C.
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2
. 
(1)求证:AB1⊥CC1;
(2)若AB1=3
,D1为线段A1C1上的点,且三棱锥C﹣B1C1D1的体积为
,求
. -
科目: 来源: 题型:
查看答案和解析>>【题目】2016年二十国集团领导人峰会(简称“G20峰会”)于9月4日至5日在浙江杭州召开,为保证会议期间交通畅通,杭州市已发布9月1日至7日为“G20峰会”调休期间.据报道对于杭州市民:浙江省旅游局联合11个市开展一系列旅游惠民活动,活动内容为:“本省游”、“黄山游”、“黔东南游”,某旅游公司为了解群众出游情况,拟采用分层抽样的方法从有意愿“本省游”、“黄山游”、“黔东南游”这三个区域旅游的群众中抽取7人进行某项调查,已知有意愿参加“本省游”、“黄山游”、“黔东南游”的群众分别有360,540,360人.
(1)求从“本省游”、“黄山游”、“黔东南游”,三个区域旅游的群众分别抽取的人数;
(2)若从抽得的7人中随机抽取2人进行调查,用列举法计算这2人中至少有1人有意愿参加“本省游”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知过点A(0,1)的椭圆C:
+
=1(a>b>0)的左右焦点分别为F1、F2 , B为椭圆上的任意一点,且
|BF1|,|F1F2|,
|BF2|成等差数列.
(1)求椭圆C的标准方程;
(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点A始终在以PQ为直径的圆外,求实数k的取值范围.
相关试题