【题目】如图:ΔABE≌ΔACD,AB=10cm,∠A=60°,∠B=30°,则AD=_____ cm,∠ADC=_____。
![]()
参考答案:
【答案】5,90°
【解析】试题分析:此题主要考查了全等三角形的性质,以及三角形内角和定理和直角三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.首先根据全等三角形的性质可得∠C=∠B=30°,AC=AB=10cm,再根据三角形内角和计算出∠ADC的度数,再根据直角三角形的性质可得AD=
AC=5cm.
解:∵△ABE≌△ACD,
∴∠C=∠B=30°,AC=AB=10cm,
∵∠A=60°,
∴∠ADC=180°-60°-30°=90°,
∴AD=
AC=5cm,
故答案为:5,90°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016山东省聊城市第29题)(1)、已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;
(2)、若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;
(3)、若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则
的值是多少?(直接写出结论,不要求写解答过程) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.
解:因为∠1=∠2=80°(已知),
所以AB∥CD__________
所以∠BGF+∠3=180°__________
因为∠2+∠EFD=180°(邻补角的性质).
所以∠EFD=________.(等式性质).
因为FG平分∠EFD(已知).
所以∠3=________∠EFD(角平分线的性质).
所以∠3=________.(等式性质).
所以∠BGF=________.(等式性质).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O是直线AB上的一点,OC⊥OD,垂足为O.
(1)若∠BOD=32°,求∠AOC的度数;
(2)若∠AOC:∠BOD=2:1,直接写出∠BOD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市元宵节灯展参观人数约为470000,将这个数用科学记数法表示为( )
A. 4.7×106 B. 4.7×105 C. 0.47×106 D. 47×104
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.

相关试题