【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,m)在边AB上,反比例函数y=
(k≠0)在第一象限内的图象经过点D、E,且cos∠BOA=
.![]()
(1)求边AB的长;
(2)求反比例函数的解析式和m的值;
(3)若反比例函数的图象与矩形的边BC交于点F,点G、H分别是y轴、x轴上的点,当△OGH≌△FGH时,求线段OG的长.
参考答案:
【答案】
(1)
解:(1)∵点E(4,m)在边AB上,
∴OA=4,
在Rt△AOB中,
∵cos∠BOA=
,
∴OB=5,
∴AB=
=3
(2)
解:由(1),可得点B的坐标为(4,3),
∵点D为OB的中点,
∴点D(2,1.5).
∵点D在反比例函数
(k≠0)的图象上,
∴k=3,
∴反比例函数解析式为
,
又∵点E(4,n)在反比例函数图象上,
∴ ![]()
(3)
解:设点F(a,3),
∵反比例函数的图象与矩形的边BC交于点F,
∴a=1,
∴CF=1,
设OG=x,
∵△OGH≌△FGH,
∴OG=FG=x,CG=3﹣x,
在Rt△CGF中,
由勾股定理可得GF2=CF2+CG2,
即x2=(3﹣x)2+12,
解得x=
,
∴OG= ![]()
【解析】(1)由矩形的性质可求得OA,由三角函数定义可求得OB,则可求得AB的长;(2)由条件可求得D点坐标,代入反比例函数解析式,可求得其解析式,把E点坐标代入解析式可求得m的值;(3)由反比例函数解析式可求得F点坐标,则可求得CF的长,设OG=x,利用三角形全等的性质可表示出CG和FG,在Rt△CGF中利用勾股定理可得到方程,可求得OG的长.
【考点精析】通过灵活运用反比例函数的性质和矩形的性质,掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD',连接D'E.

(1)如图①,当∠BAC=120°,∠DAE=60°时,求证DE=D'E.
(2)如图②,当DE=D'E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.

(1)判断A是否是PB的中点,并说明理由;
(2)若⊙O半径为8,试求BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
(拓展)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】一点
从数轴上表示
的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数;
(2)写出第
次移动后这个点在数轴上表示的数;(3)如果第
次移动后这个点在数轴上表示的数为56,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
=
的图像与正比例函数
=
的图像相交于点A(2,
),与
轴相交于点B.
(1)求
、
的值;(2)在
轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.
(1)求BC的长;
(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.

相关试题