【题目】某公司有A,B两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A,B型车共5辆,同时送七年级师生到校基地参加社会实践活动.
![]()
(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?
(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?
参考答案:
【答案】(1)该学校的租车方案有如下5种:租A型车0辆、B型车5辆;租A型车1辆、B型车4辆;租A型车2辆、B型车3辆;租A型车3辆、B型车2辆;租A型车4辆、B型车1辆.(2)当租A型车3辆、B型车2辆时,租车费用最低.
【解析】
(1)设租A型车x辆,则租B型车(5-x)辆,根据总费用=单价×数量结合租金费用不超过980元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x取正整数即可找出各租车方案;
(2)设租A型车x辆,则租B型车(5-x)辆,根据总人数=单量车的载客量×租车数量结合七年级师生共有150人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合(1)结论即可确定x的值,再根据总费用=单价×数量求出两种方案的总费用,比较后即可得出结论.
解:(1)设租A型车x辆,则租B型车(5-x)辆,根据题意得200x+150(5-x)≤980,解得x≤
.因为x取非负整数,所以x=0,1,2,3,4,所以该学校的租车方案有如下5种:租A型车0辆、B型车5辆;租A型车1辆、B型车4辆;租A型车2辆、B型车3辆;租A型车3辆、B型车2辆;租A型车4辆、B型车1辆.
(2)根据题意得40x+20(5-x)≥150,解得x≥
.因为x取整数,且x≤
,所以x=3或4.当x=3时,租车费用为200×3+150×2=900(元);当x=4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A型车3辆、B型车2辆时,租车费用最低.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论: ①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正确结论的个数是( )
A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:

某居民五月份用电190千瓦时,缴纳电费90元.
(1)求x的值和超出部分电费单价;
(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以O(0,0)、A(2,0)为顶点作正△OAP1 , 以点P1和线段P1A的中点B为顶点作正△P1BP2 , 再以点P2和线段P2B的中点C为顶点作△P2CP3 , …,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店购进一种商品,单价30元,试销中发现这种商品每天的销售量夕(件)与每件的销售价
(元)满足关系:
=100-2
.若商店每天销售这种商品要获得200元的销售利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中,正确的个数有( )
①-a一定是负数;②|-a|一定是正数;③倒数等于它本身的数是±1;
④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥若
,则a=b.A. 1个 B. 2个 C. 3个 D. 4个
相关试题