【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米. ![]()
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
参考答案:
【答案】
(1)解:根据题意得:(30﹣2x)x=72,
解得:x=3或x=12,
∵30﹣2x≤18,
∴x≥6,
∴x=12
(2)解:设苗圃园的面积为y,
∴y=x(30﹣2x)=﹣2x2+30x=﹣2(x﹣
)2+
,
∵a=﹣2<0,
∴苗圃园的面积y有最大值,
∴当x=
时,即平行于墙的一边长15>8米,y最大=112.5平方米;
∵6≤x≤11,
∴当x=11时,y最小=88平方米
【解析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30﹣2x)=﹣2x2+30x,根据二次函数的性质求解即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC、AD.

(1)求证:OC=AD;
(2)求OC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.

(1)求证:CF=CH;
(2)△ABC不动,将△EDC绕点C旋转到∠BCE=45°,证明:四边形ACDM是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为( )

A.30°
B.45°
C.60°
D.90° -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )

A.函数有最小值
B.对称轴是直线x=
C.当x<
,y随x的增大而减小
D.当﹣1<x<2时,y>0
相关试题