【题目】如图,在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC、AD. ![]()
(1)求证:OC=AD;
(2)求OC的长.
参考答案:
【答案】
(1)证明:∵△AOB是边长为2的等边三角形,
∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,
又△DCB是由△AOB绕着点B按顺时针方向旋转得到的,
∴△DCB也是边长为2的等边三角形,
∴∠OBA=∠CBD=60°,OB=AB,BC=BD,
又∠OBC=∠OBA+∠ABC=∠CBD+∠ABC=∠ABD,
在△OBC和△ABD中,
![]()
∴△OBC≌△ABD(SAS),
∴OC=AD;
(2)解:∵△AOB与△BCD是边长为2的等边三角形,
∴BO=BC,∠DBC=∠BCD=60°,
∴∠BOC=∠BCO=30°,
∴∠OCD=90°.
∵OD=4,CD=2,
∴在Rt△OCD中,由勾股定理,得
OC=
=
=2
.
【解析】(1)根据等边三角形的性质,可得OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,根据旋转的性质,可得∠OBC=∠ABD,根据SAS,可得三角形全等,根据全等三角形的性质,可得答案;(2)根据旋转的性质,可得BO=BC,∠DBC=∠BCD=60°,根据等腰三角形的性质,可得∠OCB的度数,根据勾股定理,可得答案.
【考点精析】利用等边三角形的性质对题目进行判断即可得到答案,需要熟知等边三角形的三个角都相等并且每个角都是60°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3) -
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.

(1)求证:CF=CH;
(2)△ABC不动,将△EDC绕点C旋转到∠BCE=45°,证明:四边形ACDM是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
相关试题