【题目】线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为( )![]()
A.(4,2)
B.(﹣4,2)
C.(﹣4,﹣2)
D.(4,﹣2)
参考答案:
【答案】D
【解析】解:根据坐标系可得M点坐标是(﹣4,﹣2),
故点M的对应点M′的坐标为(4,﹣2),
故选:D.
【考点精析】本题主要考查了坐标与图形变化-对称的相关知识点,需要掌握关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y);关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:

(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△ABC关于原点O对称的△A2B2C2;
(3)点C1的坐标是;点C2的坐标是;过C、C1、C2三点的圆的圆弧
的长是(保留π). -
科目: 来源: 题型:
查看答案和解析>>【题目】解答题
(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;
(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点. ①若CD=2PC时,求证:BP⊥CF;
②若CD=nPC(n是大于1的实数)时,记△BPF的面积为S1 , △DPE的面积为S2 . 求证:S1=(n+1)S2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.

(1)求该二次函数的解析式;
(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1 , 此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2 , 此时AP2=2+
;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3 , 此时AP3=3+
;…按此规律继续旋转,直到点P2012为止,则AP2012等于( ) 
A.2011+671
B.2012+671
C.2013+671
D.2014+671
-
科目: 来源: 题型:
查看答案和解析>>【题目】无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)|﹣1|+(﹣2)2+(7﹣π)0﹣(
)﹣1
(2)
÷
﹣
×
+
.
相关试题