【题目】观察下列等式
12=1=
×1×2×(2+1)
12+22=
×2×3×(4+1)
12+22+32=
×3×4×(6+1)
12+22+32+42=
×4×5×(8+1)…
可以推测12+22+32+…+n2= .
参考答案:
【答案】![]()
n(n+1)(2n+1)
【解析】解:∵第1个等式:12=1=
×1×2×(2×1+1);
第2个等式:12+22=
×2×3×(2×2+1);
第3个等式:12+22+32=
×3×4×(2×3+1)
第4个等式:12+22+32+42=
×4×5×(2×4+1)
…
∴第n个等式:12+22+32+…+n2=
n(n+1)(2n+1),
所以答案是:
n(n+1)(2n+1).
【考点精析】利用数与式的规律对题目进行判断即可得到答案,需要熟知先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.
(1)若D在BC上(如图1)求证CD+CE=CA;

(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;
(2)当AD=10,AB=3时,求线段BE的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )

A.
B.2
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)计算:﹣22+|
﹣4|+(
)﹣1+2tan60°.
(2)先化简,再求值:(
﹣
)÷
,其中x是不等式3x+7>1的负整数解. -
科目: 来源: 题型:
查看答案和解析>>【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)
频数
百分比
2≤x<3
2
4%
3≤x<4
12
24%
4≤x<5


5≤x<6
10
20%
6≤x<7

12%
7≤x<8
3
6%
8≤x<9
2
4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC,则图中的全等三角形共有________对.

相关试题