【题目】如图,已知直线
与
轴、
轴交点分别为
、
,另一直线![]()
经过
,且把
分成两部分.
(1)若
被分成的两部分面积相等,求
和
的值.
(2)若
被分成的两部分面积之比为
,求
和
的值.
![]()
参考答案:
【答案】(1)k=-2,b=2;(2)
或![]()
【解析】
(1)△AOB被分成的两部分面积相等,那么被分成的两部分都应该是三角形AOB的面积的一半,那么直线y=kx+b(k≠0)必过B点,因此根据B,C两点的函数关系式可得出,直线的函数式.
(2)若△AOB被分成的两部分面积比为1:5,那么被分成的两部分中小三角形的面积就应该是大三角形面积的
,已知了直线过C点,则小三角形的底边是大三角形的OA边的一半,故小三角形的高应该是OB的
,即直线经过的这点的纵坐标应该是
.那么这点应该在y轴和AB上,可分这两种情况进行计算,运用待定系数法求函数的解析式.
(1)由题意知:直线y=kx+b(k≠0)必过C点,
∵C是OA的中点,
∴直线y=kx+b一定经过点B,C,如图(1)所示,
![]()
把B,C的坐标代入可得:
,
解得k=2,b=2;
(2)∵S△AOB=12×2×2=2,
∵△AOB被分成的两部分面积比为1:5,那么直线y=kx+b(k≠0)与y轴或AB交点的纵坐标就应该是:2×2×
=
,
①当y=kx+b(k≠0)与直线y=x+2相交时,交点为D,如图(2)所示,
![]()
当y=
时,直线y=x+2与y=kx+b(k≠0)的交点D的横坐标就应该是x+2=
,
∴x=
,
即交点D的坐标为(
,
),
又根据C点的坐标为(1,0),可得:
![]()
∴k=2,b=2,
②当y=kx+b(k≠0)与y轴相交时,交点为E,如图(3)所示,
![]()
∴交点E的坐标就应该是(0,
),又有C点的坐标(1,0),可得:
![]()
∴
k=
,b=
,
因此:k=2,b=2或k=
,b=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图. 根据图象解决下列问题:

(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?
(2) 分别求出甲、乙两人的行驶速度;
(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读,我们知道,在数轴上,x=1表示一个点,而在平面坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形,就是一次函数y=2x+1的图象,它也是一条直线,如图1,可以得出,直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组
的解,所以这个方程组的解为

在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧的部分,如图2;y≤2x+1,也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图3.
回答下列问题:
(1)在直角坐标系(如图4)中,用作图的方法求方程组
的解;(2)用阴影表示
所围成的区域. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本题10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩 形,这样的矩形称为叠合矩形.




(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段 , ;S矩形AEFG:S□ABCD=
(2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出AD,BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2
,求线段EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1) 如图1,在一条笔直的公路两侧,分别有A、B两个村庄,现在要在公路l旁建一座火力发电厂,向A、B两个村庄供电,为使所用的电线最短,请问供电厂P应健在何处?画出图形,不写作法,保留作图痕迹;
(2) 如图2,若要向4个村庄A、B、C、D供电,供电厂P又该建在何处能使所用电线最短呢?画出图形,不写作法,保留作图痕迹;
(3)A、B、C、D如图3,连接AC并延长到E,使CE=AC,连接BD并反向延长到F,不写作法,保留作图痕迹.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式
,已知点O与球网的水平距离为5m,球网的高度1.55m.
(1)当a=
时,①求h的值.②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为
m的Q处时,乙扣球成功,求a的值.
相关试题