【题目】如图,已知点E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足.连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,求证:OE=4EF.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据角平分线的性质得到ED=EC,证明Rt△ODE≌Rt△OCE,得到OD=OC,根据线段垂直平分线的判定定理证明结论;
(2)根据在直角三角形中,30°所对的直角边是斜边的一半解答即可.
试题解析:(1)证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴ED=EC,
在Rt△ODE和Rt△OCE中,
,
∴Rt△ODE≌Rt△OCE,
∴OD=OC,又ED=EC,
∴OE是CD的垂直平分线;
(2)∵∠AOB=60°,
∴∠BOE=30°,
∴OE=2DE,
∵ED⊥OB,OE⊥CD,∠BOE=30°,
∴∠FDE=30°,
∴DE=2EF,
∴OF:FE=3:1.
∴OE=4EF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=
与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC,BC,AD,BD,某同学根据图象写出下列结论:①a-b=0;②当x<
时,y随x增大而增大;③四边形ACBD是菱形;④9a-3b+c>0.你认为其中正确的是
A. ②③④ B. ①②③ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OC在∠BOD内.
(1)如果∠AOC和∠BOD都是直角.
①若∠BOC=60°,则∠AOD的度数是 ;
②猜想∠BOC与∠AOD的数量关系,并说明理由;
(2)如果∠AOC=∠BOD=x°,∠AOD=y°,求∠BOC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】4的相反数是 * .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.
求证:(1)△ACE≌△BCD;(2)△GFC是等边三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】冰箱开始启动时的内部温度为10℃,若每2小时冰箱内部的温度降低9℃,那么3小时后冰箱内部温度是__℃.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:(m﹣2)2﹣m(m﹣1),其中m=﹣3.
相关试题