【题目】(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,
①则线段BC,DC,EC之间满足的等量关系式为 ;
②求证:BD2+CD2=2AD2;
(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
![]()
参考答案:
【答案】(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.
【解析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案为:BC=DC+EC;
②证明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:
![]()
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE=
=
=6
,
∵∠DAE=90°,
∴AD=AE=
DE=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.
(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?
(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;
(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程
.(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x(件),其中x>0.
若在甲地销售,每件售价y(元)与x之间的函数关系式为y=﹣
x+100,每件成本为20元,设此时的年销售利润为w甲(元)(利润=销售额﹣成本).若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,18≤a≤25 ),每件售价为98元,销售x(件)每年还需缴纳
x2元的附加费.设此时的年销售利润为w乙(元)(利润=销售额﹣成本﹣附加费).(1)当a=18,且x=100是,w乙= 元;
(2)求w甲与x之间的函数关系式(不必写出x的取值范围),当w甲=15000时,若使销售量最大,求x的值;
(3)为完成x件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=3,BC=4,点M是BC的中点,点P从点M出发沿MB以每秒1个单位的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;同时点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作正方形PQEF,使它与矩形ABCD在BC的同侧,点P,Q同时出发,当点P返回点M时,则两点停止运动,设点P,Q运动的时间是t秒(t>0).
(1)当点P运动到BM的中点时,t= ;
(2)设正方形PQEF与矩形ABCD重叠部分的面积为S,直接写出S与t之间的函数关系式及t的取值范围;
(3)连结AC,当正方形PQEF与△ADC重叠部分为三角形时,求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.
(1)本次接受问卷调查的学生有________名.
(2)补全条形统计图.
(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.
(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.
(1)当x为何值时,PQ∥BC;
(2)当
时,求
的值;(3)△APQ能否与△CQB相似?若能,求出时间x的值;若不能,说明理由.

相关试题