【题目】在平面直角坐标系中,已知直线l1:y=2x+1
(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;
(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;
(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.
![]()
参考答案:
【答案】(1)平移后直线的解析式y=2x-7;(2)
<m<1;(3)-5<x<-2
【解析】
(1)利用两直线平行的问题,设平移后的直线解析式为
然后把(1,-5)代入求出t即可;
(2)先解方程组
得
与直线
的交点坐标为(m-1,2m-1),利用第二象限点的坐标特征得到
,然后解不等式组即可;
(3)写出直线
在x轴上方,且直线
在直线
的下方所对应的自变量的范围即可.
(1)设平移后的直线解析式为y=2x+t,
把(1,-5)代入得2+t=-5,解得t=-7,
所以平移后直线的解析式y=2x-7;
(2)解方程组
得
,
所以y=x+m与直线l1的交点坐标为(m-1,2m-1)
因为![]()
所以
<m<1;
(3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n与x轴的交点坐标为(-2,0),
所以不等式组0<nx+2n<x+b的解集为-5<x<-2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是( )
A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,BC=5,过点A作AE⊥AB且AB=AE,过点E分别作EF⊥AC,ED⊥BC,分别交AC和BC的延长线与点F、D.
(1)求证:△ABC≌△EAF;
(2)若FC=7,求四边形ABDE的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型
甲
乙
丙
汽车运载量(吨/辆)
5
8
10
汽车运费(元/辆)
400
500
600
(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点称之为“湘一点”.
(1)求函数y=
x-3的图象上所有“湘一点”的坐标;(2)若直线y=mx+m(m为常数)与直线y=x-2的交点为“湘一点”,试求出整数m的值.
(3)若直线y=-x+b、直线y=3、直线y=x+2所围成的平面图形中(不含边界)共有6个“湘一点”,试求出常数b的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:数a,b,c 在数轴上的对应点如下图所示,
(1)在数轴上表示﹣a;
(2)比较大小(填“<”或“>”或“=”):a+b 0,﹣3c 0,c﹣a 0;
(3)化简|a+b|﹣|﹣3c|﹣|c﹣a|.

相关试题