【题目】如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2
)米. ![]()
(1)求背水坡AD的坡度;
(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.
参考答案:
【答案】
(1)解:如图,过点C作CP⊥AB于点P,
![]()
则四边形CDGP是矩形,
∴CP=DG=2,CD=GP=6,
∵∠B=30°,
∴BP=
=
=2
,
∴AG=AB﹣GP﹣BP=8+2
﹣6﹣2
=2=DG,
∴背水坡AD的坡度DG:AG=1:1
(2)解:由题意知EF=MN=4,ME=CD=6,∠B=30°,
则BF=
=
=4
,HN=
=
=4,NF=ME=6,
∴HB=HN+NF+BF=4+6+4
=10+4
,
答:加高后坝底HB的宽度为(10+4
)米
【解析】(1)作CP⊥AB于点P,即可知四边形CDGP是矩形,从而得CP=DG=2、CD=GP=6,由BP=
=2
根据AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根据题意得EF=MN=4、ME=CD=6、∠B=30°,由BF=
、HN=
、NF=ME,根据HB=HN+NF+BF可得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中所有的三角形都是直角三角形,四边形都是正方形,已知正方形A,B,C,D的边长分别是12,16,9,12,则最大正方形E的面积是_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=
,cot∠ABC=
,AD=8.
(1)求⊙D的半径;
(2)求CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=6cm,BC=8cm,若将矩形对角线BD对折,使B点与D点重合,四边形EBFD是菱形吗?请说明理由,并求这个菱形的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】应用探究题 在图①中,已知长方形的长和宽分别为a,b,将线段A1A2向右平移1个单位长度到B1B2的位置,得到封闭图形A1A2B2B1(即阴影部分).
在图②中,将折线A1A2A3向右平移1个单位长度到折线B1B2B3的位置,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图③中,请你画一条类似的有两个折点的折线,同样向右平移1个单位长度,从而得到一个封闭图形,并用阴影表示;
(2)请你分别写出前三个图形中除去阴影部分后剩余部分的面积:S1,S2,S3;
(3)联想与探索:
如图④,在一块长方形草地上,草地的长和宽仍分别为a,b,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.

(1)求证:GF=BF.
(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FOED=ODEF. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=
的图象的两个交点,直线AB与y轴交于点C. 
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b<
的解集.
相关试题