【题目】背景资料:
在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.
![]()
这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.
如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.
解决问题:
(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.
为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB= ;
基本运用:
(2)请你利用第(1)题的解答思想方法,解答下面问题:
如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;
能力提升:
(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,
连接AP,BP,CP,求PA+PB+PC的值.
![]()
参考答案:
【答案】(1)150°;
(2)E′F2=CE′2+FC2,理由见解析;
(3)
.
【解析】试题分析:(1)
(2)首先把△ACE绕点A顺时针旋转90°,得到△ACE′.连接E′F,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,然后再证明△EAF≌△E′AF可得E′F=EF,,再利用勾股定理可得结论;
(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据已知证明C、O、A′、O′四点共线,在Rt△A′BC中,利用勾股定理求得A′C的长,根据新定义即可得OA+OB+OC =
.
试题解析:(1)∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∴将△ABP绕顶点A逆时针旋转60°得到△ACP′,如图,连结PP′,
∴AP=AP′=3,∠PAP′=60°,P′C=PB=4,∠APB=∠AP′C,
∴△APP′为等边三角形,
∴∠PP′A=60°,PP′=AP=3,
在△PP′C中,∵PP′=3,P′C=4,PC=5,
∴PP′2+P′C2=PC2,
∴△PP′C为直角三角形,∠PP′C=90°,
∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°,
∴∠APB=150°,
故答案为:150°;
(2)E′F2=CE′2+FC2,理由如下:
如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,
由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠E′AF,
在△EAF和△E′AF中,
,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2;
![]()
(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,
![]()
∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,
∴BC=
=
,
∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;
∠A′BC=∠ABC+60°=30°+60°=90°,
∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,
∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等边三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=∠BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四点共线,
在Rt△A′BC中,A′C=
=
=
,
∴OA+OB+OC=A′O′+OO′+OC=A′C=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在以下现象中,属于平移的是( )
①在荡秋千的小朋友; ②电梯上升过程;
③宇宙中行星的运动; ④生产过程中传送带上的电视机的移动过程.
A.②④B.①②C.②③D.③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AOB是一条直线,OC是∠AOD的平分线,OE 是∠BOD的平分线.

(1)若∠AOE=140°,求∠AOC的度数;
(2)若∠EOD :∠COD=2 : 3,求∠COD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图5,O为直线AB上一点, ∠AOC=48°,OE平分∠AOC, ∠DOE=90°
(1)求∠BOE的度数。
(2)试判断OD是否平分∠BOC?试说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为
.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数
.①当点B(m,
)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数
的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣
,1),(
,1}),连结MN.直接写出线段MN与二次函数
的相关函数的图象有两个公共点时n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系内,已知A(2x,3x+1).
(1)点A在x轴下方,在y轴的左侧,且到两坐标轴的距离相等,求x的值;
(2)若x=1,点B在x轴上,且S△OAB=6,求点B的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.

(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.
相关试题