【题目】如图,已知四边形ABCD内接于⊙O,A是
的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且
.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
![]()
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且
就可以;
(2)A是
的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.
试题解析:(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.
∵
,∴∠DCA=∠BAE,∴△ADC∽△EBA;
(2)解:∵A是
的中点,∴
,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,
,即
,∴AE=
,∴tan∠CAD=tan∠AEC=
=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线
与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且
,则k的值是( )
A.4
B.2
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D.E为
的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;
(2)若AB=3,BC=4,求CE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点P(3a,a)是反比例函数y=
(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )
A.y=
B.y=
C.y=
D.y=
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算中,正确的是( )
A.3a2a=6a2
B.(a2)3=a9
C.a6﹣a2=a4
D.3a+5b=8ab -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.
(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);
(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.
①求证:OD⊥BC;
②求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.

相关试题