【题目】如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是_________.
![]()
参考答案:
【答案】120°
【解析】如图所示:延长CO到F,
∵AC=BC,∠ACB=90°,
∴∠A=∠B=45°,
由翻折的性质可知:∠A′CF=
∠ACF,∠B′CF=
∠BCF,
∠CA′O=∠DA′O=∠A=45°,∠OB′C=∠CB′E=∠B=45°,
∴∠A′CB′=∠A′CF+∠B′CF=
∠ACB=30°,
∴∠A′OB′=∠A′CB′+∠CA′O+∠OB′C=30°+45°+45°=120°,
故答案为:120°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.

(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金? -
科目: 来源: 题型:
查看答案和解析>>【题目】⊙O是△ABC的外接圆,AB是直径,过
的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;
(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;
(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2
,求AC的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB边的垂直平分线
交BC于D,AC边的垂直平分线
交BC于E,
与
相交于点O,△ADE的周长为6cm.(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6
),且以y轴为对称轴.
(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣
)作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;
(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点的坐标分别为:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)将△ABC沿y轴翻折,画出翻折后的△A1B1C1 , 点A的对应点A1的坐标是
(2)△ABC关于x轴对称的图形△A2B2C2 , 直接写出点A2的坐标
(3)若△DBC与△ABC全等(点D与点A重合除外),请直接写出满足条件点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:

(1)△AEF≌△CEB;
(2)AF=2CD.
相关试题