【题目】已知在△ABC中,∠ABC=90°,AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图①)或线段AB的延长线(如图②)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
![]()
参考答案:
【答案】(1)详见解析;(2)当△PQB为等腰三角形时,AP的长为
或6.
【解析】试题分析:(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△AQP∽△ABC;
(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.
(I)当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;
(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.
试题解析:(1)∵PQ⊥AQ,
∴∠AQP=90°=∠ABC,
在△APQ与△ABC中,
∵∠AQP=90°=∠ABC,∠A=∠A,
∴△AQP∽△ABC.
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠QPB为钝角,
∴当△PQB为等腰三角形时,
(I)当点P在线段AB上时,如图1所示.
∵∠QPB为钝角,
∴当△PQB为等腰三角形时,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
∴
,即
,解得:PB=
,
∴AP=AB-PB=3-
=
;
(II)当点P在线段AB的延长线上时,如图2所示.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,点B为线段AP中点,
∴AP=2AB=2×3=6.
综上所述,当△PQB为等腰三角形时,AP的长为
或6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)随用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面上点P到圆周上的点的最长距离为8,最短距离为4,则此圆的半径为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简﹣2+3的结果是( )
A.﹣1
B.1
C.﹣5
D.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB,AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形AOBC中,点A的坐标是(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是( )

A. (
,3),(-
,4) B. (
,3),(-
,4)C. (
,
),(-
,4) D. (
,
),(-
,4) -
科目: 来源: 题型:
查看答案和解析>>【题目】点 P(﹣4,﹣3)所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
相关试题