【题目】如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至点E,使得OE=OB,交⊙O于点F,连接AE,CE. ![]()
(1)求证:AE是⊙O的切线;
(2)求证:四边形ADCE是矩形;
(3)若BD=
AD=4,求阴影部分的面积.
参考答案:
【答案】
(1)证明:∵AB=AC,AD是BC边上的中线,
∴∠ODB=90°,
在△BOD和△EOA中,
,
∴△BOD≌△EOA,
∴∠OAE=∠ODB=90°,
∵点A在圆上,
∴AE是⊙O的切线;
(2)由(1)知,△BOD≌△EOA,
∴BD=AE,
∵AD是BC边上的中线,
∴CD=BD,
∴AE=CD,
∵∠OAE=∠ODB=90°,
∴AE∥BC,
∴四边形ADCE是平行四边形
∵∠OAE=90°,
∴平行四边形ADCE是矩形;
(3)解:∵∠ODB=90°,BD=OD,
∴∠BOD=45°,
∴∠AOE=45°
∵∠OAE=90°,
∴AE=OA=
AD=4
∴S△OAE=
×OA×AE=
×4×4=8,
S扇形OAF=π×42×
=2π,
∴S阴影部分=S△OAE﹣S扇形OAF=8﹣2π.
【解析】(1)利用等腰三角形的三线合一的性质,得出∠ODB=90°,从而得出△BOD≌△EOA,得出∠OAE=∠ODB=90°,即可;(2)利用(1)△BOD≌△EOA和三角形的中线得出结论;(3)先判断出AE=OA=4,阴影部分面积用三角形OAE的面积减去扇形OAF的面积即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着科技的不断发展,人与人的沟通方式也发生了很大的变化,盘锦市某中学九年级的一个数学兴趣小组在本年级学生中进行“学生最常用的交流方式”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与书信交流;D.电话交流.根据调查数据结果绘制成以下两幅不完整的统计图:

(1)本次调查,一共调查了名同学,其中C类女生有名,D类男生有名;
(2)若该年级有学生150名,请根据调查结果估计这些学生中以“D.电话交流”为最常用的交流方式的人数约为多少?
(3)在本次调查中以“C.短信与书信交流”为最常用交流方式的几位同学中随机抽取两名同学参加盘锦市中学生书信节比赛,请用列举法求所抽取的两名同学都是男同学的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.

(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件. ①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线与x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<x2 , 与y轴交于点C(0,﹣4),其中x1 , x2是方程x2﹣4x﹣12=0的两个根.

(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
相关试题