【题目】今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.
(1)当n=500时,
①根据信息填表(用含x的式子表示);
树苗类型 | 甲种树苗 | 乙种树苗 |
购买树苗数量(单位:棵) | x | |
购买树苗的总费用(单位:元) |
②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?
(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.
![]()
参考答案:
【答案】(1) ①500-x 50x 80(500-x) ②甲种树苗购买了480棵,乙种树苗购买了20棵 (2) 418.
【解析】试题分析:(1)设甲种树苗的数量为x棵,则乙种树苗的数量为500-x棵,根据购买甲、乙两种树苗共用25600元可列方程求解即可;
(2)根据这批树苗的成活率不低于92%可列出不等式求解.
试题解析:解:(1)①500-x,50x,80(500-x);
②50x+80(500-x)=25 600,解得:x=480,500-x=20.
答:甲种树苗购买了480棵,乙种树苗购买了20棵.
(2)依题意,得:90%x+95%(n-x)≥92%×n,解得:x≤
n.
又50x+80(n-x)=26 000,解得:x=
,
∴
≤
n,∴n≤
.
∵n为正整数,∴n的最大值为419.
∵当n=419时,x=
=
不是整数;
当n=418时,x=
=248是整数,∴n=418.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现定义一种新运算:“※”,使得a※b=4ab
(1)求4※7的值;
(2)求x※x+2※x﹣2※4=0中x的值;
(3)不论x是什么数,总有a※x=x,求a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米,求旗杆的高度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列不等式或不等式组,并把它们的解集在数轴上表示出来.
(1)5x+15>4x-13; (2)
≤
;(3)
(4) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】绿豆在相同条件下的发芽试验,结果如下表所示:
每批
粒数n
100
300
400
600
1000
2000
3000
发芽的
粒数m
96
282
382
570
948
1912
2850
发芽的
频率
0.960
0.940
0.955
0.950
0.948
0.956
0.950
则绿豆发芽的概率估计值是( )
A. 0.96 B. 0.95 C. 0.94 D. 0.90
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列试验中,概率最大的是( )
A. 抛掷一枚质地均匀的硬币,出现正面的概率
B. 抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数的概率
C. 在一副洗匀的扑克(背面朝上)中任取一张,恰好为方块的概率
D. 三张同样的纸片,分别写有数字2、3、4,洗匀后背面向上,任取一张恰好为偶数的概率
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与坐标轴分别交于A、B两点,已知点A的坐标为(0,8),点B的坐标为(8,0),OC、AD均是△OAB的中线,OC、AD相交于点F,OE⊥AD于G交AB于E.
(1)点C的坐标为__________;
(2)求证:△AFO≌△OEB;
(3)求证:∠ADO=∠EDB

相关试题